
ARTICLES

REASONING WITH WORLDS AND TRUTH
MAINTENANCE IN A KNOWLEDGE-BASED
PROGRAMMING ENVIRONMENT

In traditional knowledge-based system development environments, the
fundamental representational building blocks are mechanisms such as
frames, rules, and attached procedures. The KEE system has been extended
to include both a context (worlds) system and a truth maintenance qstem.

ROBERT E. FILMAN

Broadly speaking, computers are information trans-
ducers: They read data, manipulate the data in some
computational process, and display the results. The
mapping we create between the input data, the manip-
ulation and output data, and the external world is part
of what makes computers valuable. The payroll pro-
gram that takes wage rates and hours worked, multi-
plies and figures deductions, and prints the values for
net paychecks is useful because the wage rates and
hours worked, computations, and net checks corre-
spond ‘to the real hours, rates, etc., of the company’s
workers. Traditionally, computers have been limited to
modeling only those parts of the world where regularity
dominates exception. That is, because workers are paid
the product of their wage rate and hours worked-less
deductions computed by simple formulas and table
lookups-it is straightforward to write a computer pro-
gram that computes paychecks. Because a company has
many workers who it repeatedly pays by the same algo-
rithm, it is worthwhile for it to have such a program
written. To the extent that the underlying world is
more complex, the program required for the modeling
becomes more complex, and takes (perhaps exponen-
tially) more skill to design, more time to write, more

This research was supported by the Defense Advanced Research Project
Agency under Contract F3060Z85-C-0065. The views and conclusions re-
ported here are those of the author and should not be construed as represent-
ing the official position or policy of DARPA. the U.S. government, or Intelli-
Corp.

0 1066 ACM 0001.07t72/t78/0400-0382 $1.50

effort to debug, and more devotion to maintain. A pay
system based, for example, on the complexity of task
performed, the external demand for the objects pro-
duced, predictions about future economic conditions,
and the artistic quality of the work is beyond the reach
of conventional programming technology. Dealing with
that degree of complexity requires more sophisticated
systems than are currently available.

The goal of knowledge-based systems (KBS) technol-
ogy is to greatly expand the horizon of “reasonable-to-
build” applications. The use of KBS technology
simplifies modeling a large class of complex s,ituations
involving symbolic reasoning and eases the task of stat-
ing complicated things about irregular domains. Never-
theless, even this expressiveness would not be useful
without the tools to make it accessible-inspection and
modification mechanisms to reveal the state of the
model, and input and display mechanisms to easily
translate between computer and human-understanda-
ble forms. Toward this end, several KBS development
environments have been developed, both in research in-
stitutions and commercially. These environments use
technologies such as pattern-action rules (Emycin [26],
OPS-5 [Z], ART@ [27], S-l@ [lo]), frames (Units [23],
KL-ONE [l]), variants of procedural attachment (i.e.,
daemons and object-oriented programming) (ISmalltalk
[9], Flavors [25]), and integrations of the above (Loops
[24], KEEa [6]). Such environments provide not only

ART is a trademark of Inference Corporation.
S-l is a trademark of TeKnowledge.
KEE is a trademark of IntelliCorp.

382 Communications of the ACM April 1988 Volume 31 Number 4

Articles

the internal representational structures of their chosen ploit these new facilities requires further research and
paradigm, but also interface facilities that understand experimentation. This article presents some of our
and can manipulate these structures. early experiments with the new system.

Recently, we have extended the KEE environment to
include both a truth mnintenance system (TMS) (based on
de Kleer’s work on the assumption-based truth mainte-
nance system (ATMS) [3]) and a context or worlds sys-
tem [19]. We call these extensions KEEworlds@. A world
represents a set of related facts-for example, a situa-
tion, a simulation checkpoint, a belief set, or a hypo-
thetical state of a problem solver. A world is character-
ized by a set of assumptions. The TMS remembers the
assumptions on which each deduced fact is based. A
world sees a deduced fact if and only if the world’s
assumptions are a superset of the assumptions that sup-
port that deduction.

The primary activity of a KEE system user is first
constructing a model of an underlying domain and then
building one or more reasoning components that ma-
nipulate that model. Thus, KEE is a tool that enables
model-based reasoning. In this article we develop several
examples of reasoning with KEEworlds, all centered
around a common domain of scheduling shipments. As
truth maintenance may be unfamiliar to some readers,
we provide a short overview and history of truth main-
tenance in the accompanying sidebar.

The integration of a conventional object-oriented rep-
resentation environment with worlds and truth mainte-
nance is a novel combination. It required modifying the
system’s internal representation structures, and con-
structing a new rule system to manipulate world and
ATMS entities. Similarly, discovering how best to ex-

AN OBJECT-CENTERED DOMAIN DESCRIPTION
We illustrate our discussion of knowledge representa-
tion and reasoning with examples from the problem of
building tools to aid the dispatcher of the hypothetical
Big Giant Trucking Company. Big Giant serves 24 cities
in Indiana and Illinois (Figure 1 shows an area we call
Mid. Continent) moving shipmenfs of various mate-
rials over particular highways in certain trucks driven ty
specified drivers.

KEEworlds is a trademark of IntelliCorp. The dispatcher wants to devise a schedule-a collec-

April 1988 Volume 31 Number 4

FIGURE 1. Mid. Continent

Communications of the ACM 383

Articles

An Overview of Truth Maintenance

In general, reasoning is the process of deriving new knowl-
edge from old. If the underlying knowledge never changes, if
we never explore hypothetical spaces, and if our knowledge
is free of internal contradictions, the accumulation of knowl-
edge is straightforward: We just add the results of our rea-
soning to our pile of knowledge. Unfortunately, few problems
are so simple. We usually find ourselves reasoning under a
set of assumptions that may be withdrawn or changed.
Often the entire reasoning process is focused on identifying
preferred assumption sets. Ideally, when the assumptions
change, we would like to withdraw those conclusions that
are no longer valid, retaining those that are still true. This
requires attaching to derived facts justifications or dependen-
cies, that is, reasons for belief in these facts.

Historically, the need for dependencies first arose in the
context of the frame problem [16]-the problem of determin-
ing what has not changed over an event or series of events.
For example, we imagine situation S, where a monkey is in a
room with a red box located at position (x, y). The action of
the monkey, A, of pushing the box to (x’, y’) creates a new
situation, S’. How is our computer system to know that the
color of the box is still red in S’? It is not the case that the
color of the box is constant over all actions. Instead, if A had
been the action painting the box green, then the color of the
box would be different in S’. Our system must somehow
incorporate the knowledge that the action of moving an ob-
ject does not change its color.

Systems such as STRIPS [7] and PLANNER [l l] ap-
proached the frame problem by associating with each action
lists of facts that were added by the action and facts that
were deleted by the action. The problem with this approach
is that to be correct the operators that changed system state
had to modify all facts that had been derived on the basis of
the now-to-be-deleted facts. That is, if in state S, above, we
had concluded that the box at (x, y) was under a bunch of
bananas, and that action A was moving the box, we needed
to withdraw this conclusion in S’.

One of the first systems to associate dependencies with
derivations was Stallman and Sussman’s system for circuit
analysis, EL [22]. Their goal was to find those faulty assump
tions responsible for producing contradictions. They intro-
duced the idea of dependency-directed backtracking. Tradition-
ally, many systems have relied on chronological backtrucking,
that is, considering all the possibilities for the most recent
choice before revising any earlier decision. Chronological
backtracking has the advantage that it is simple to implement
with a stack.

We illustrate the disadvantages of chronological back-
tracking with a variant on the monkey-and-bananas problem.
In the traditional monkey-and-bananas problem, a monkey is
in a room, and the room has a bunch of bananas hanging
from the ceiling and a box on the floor. The monkey wants to
get (and then eat) the bananas. To achieve this goal, the
monkey must push the box under the bananas, climb the
box, and grab the bananas. In our problem, our monkey
comes into a room with several boxes and several bunches
of hanging bananas. The monkey’s goal is once again to

obtain a comestible bunch. The monkey proceeds ‘to select a
bunch of bananas, select a box, push the box under the
bananas, climb, and grab. But lo-the bananas are sour. The
monkey has a failure. Chronologically backtracking, the mon-
key reconsiders the last decision, the box selections. So the
monkey picks another box, climbs down, pushes the first
box away, pushes the new box under the same bunch of
bananas, and so forth. Only after the monkey has exhausted
all the boxes in the room does the chronologically backtrack-
ing monkey reconsider the choice of which bunch of bananas
to pursue. A monkey using dependency-directed backtrack-
ing would notice that the sourness of the bananas (depended
only on the bunch choice (independent of the box c:hoice),
and would revise that choice instead. That is, in delmndency-
directed backtracking, the choice to be revised is not simply
the last choice made, but a choice that contributed to the
failure. To be able to do this, we must keep the dependen-
cies of derivations. (There are, of course, other salutary ef-
fects from retaining dependencies for conclusions. ‘The most
important of these is that we are keeping the information
required to explain the derivation and validity of those con-
clusions.)

Doyle [5] and, independently, London [12] were ‘the first
to recognize that the facilities for recording dependencies,
dependency-directed backtracking, and “currently believing”
particular assumptions could be incorporated into a system
independent of an overarching reasoning mechanism. Doyle
called his system a truth maintenance system or TMS (the
term has stuck, though he currently favors the phrase reason
maintenance system). In addition to dependencies, Doyle’s
system incorporated the idea that particular assumptions
could be in (currently believed) or out (not currently believed);
a particular derivation would be valid, for example, if assump-
tions X and y were in, but 2, out. In-ness and out-ness
enable both modeling varying “current worlds” (worlds being
assignments of in and out to assumptions), and basing be-
liefs on the out-ness of facts (in the spirit of Planner’s
THNOT (not found) [l 11). Issues in the implementation
of TMSs arise in the algorithms for revising the beliefs of
the system when assumptions go in and out. In general,
algorithmic and semantic difficulties can ensue when
revising beliefs that have (circularly) come to support
themselves.

TMSs have been a fertile field for artificial intelligence (Al)
research, for example, the work of de Kleer et al. [4],
McAllester [14], McDermott [17], and Martins and Shapiro
[13]. In our work, we have been extending de Kleer’s as-
sumption-based truth maintenance system (ATMS) 131 to
include contextual mechanisms (worlds), nonmonotonicity
(assumption retraction), and integration with an underlying
frame system.’

’ In the first two respects, our system appears similar in behavior to the
Viewoointsw facilitv of ART 1271. As little has been oublished about the
alnorithms of that system, ho&&r. it is difficult to make detailed compari-

TM Viewpoints is a trademark of Inference Corporation.

384 Communications of the ACM April 1988 Volume 31 Number 4

Articles

FIGURE 2. The trucks Hierarchy

tion of trips (an assignment of a truck and a driver to a
particular itinerary) such that all shipments are picked
up at their origins and delivered to their destinations.
The dispatcher’s job is complicated by the fact that he
or she is working under a set of constraints-restrictions
about what constitutes a legal schedule. These con-
straints range from common sense, for example, “The
driver of a trip has to be in the same city as the truck”
and “You can’t put more on a truck than it can hold”;
through the legalities of this particular domain, for ex-
ample, “Union drivers can’t drive more than 11 hours a
day” and “You need the right kind of license to drive
the bigger trucks”; and on to the absurdities that char-
acterize so much of the real world, for example, “Driver
White is wanted by the police in Illinois and can’t be
sent there.” Ideally, the dispatcher would like to optim-
ize-to construct a near-minimal cost schedule-but in
a highly constrained situation, is usually lucky just to
find a feasible (legal) schedule.

Although Big Giant is just a simple example devel-
oped to illustrate the points of this article, it shares
with real problems a complex texture of regularity
punctured by exceptions. Such a combination of regu-
larity and exception characterizes domains most appro-
priate for knowledge-based techniques: The regularity
of the domain enables us to actually build something,
whereas the exceptions foil conventional programming
technology.

We represent the objects of the domain as units
(frames) and arrange these units in a class hierarchy;
thus, the class of trucks has subclasses big. trucks,
medium. trucks, and small _ trucks. Individual
trucks are members of these classes (Figure 2). For ex-
ample, truck Piper is a member of the class of
small. trucks. Both classes and members are repre-
sented as units; a given unit can represent both a class
and a member of a class.

Relationships between objects and values are repre-
sented as slots in the units that represent the objects.
There are two kinds of slots: member slots and own slots.
An own slot expresses a relationship involving its unit
as an individual. Thus, the statement that the value of
the own slot location in unit Piper is Gary is the
assertion that the location of Piper is Gary. Member
slots occur only in class units. A member slot expresses
a relationship involving the members of the class. The

bm s1or: OlSTANCE *om EXAMPLE.TRIP
vo/ues: 360

mn slot: ORWER rrom EXAMPLE.TRIP
va,ues: GRAY

hm slot: ORWER.COST from EXAMPLE.TRIP
vo,ues: UNKNOWN

,wn slot: oRI”ER.COST.PER.HO”R from EXAMPLE.TRIP
vc7b.le*: UNKNOWN

,wn slot: o”R*TION from EXAMPLE.TRIP
Values: UNKNOWN

mn 51ot: ITINERARY from EXM.wl.E.TRIP
Values: ((INDIANAPOLIS NIL ORIGIN) (SEYMOUR COMPUTERS ON) (THAYER COMPUTERS OFF:

3rvn s1ot: MAX.“OL”ME lrom TRIPS
Vohos: UNKNOWN

3wn dot: MAX.WEIGHT from TRlPS
Yaluor: UNKNOWN

3wn s1or: ORlOIN from EXAMPLE.TRIP
“alms: lNOlANAPOL,S

3wn sIoT: SHIPMENTS.HANOLEO lrom EXAMPLE
Values: COMPUTERS

3wn riot: TOTAL.COST from EYAMPLE.TRW’
Vahes: UNKNOWN

3wn slot: TRUCK Tram EXAMPLE.TRIP
Vahes: PIPER

3wn slot: TR”CK.COST flom EXAMPLE.TRIP
Vclues: UNKNOWN

April 1988 Volume 31 Number 4

FIGURE 3. Example. trip

Communications of the ACM 385

Articles

statement that the value of the member slot location
in unit trucks is Indianapolis is (to a first approx-
imat:ion) the assertion that the location of any member
of the class of trucks defaults to Indianapolis.
.&zcets are annotations of slots to express additional in-
formation about that slot. The facets of member slots
inherit along with the slot itself. Typical facets are
inheritance role (the rule used to combine values from
the unit’s parents with the unit’s local values),
valueclass (type), and min. cardinality
and max _ cardinality (restrictions on the number
of values a slot can have).

KEE provides a number of standard inheritance roles,
such as union (the value in an inherited slot is to be the
union of the local values and the inherited values),
override.values (if there is a local value in the slot, it is
the value of the slot; otherwise, the values inherited
from some parent are used), and method (a mechanism
for assembling functions from fragments, similar to the
mix-ins of Flavors [25]). Users can describe additional
inheritance roles of their own. Although KEE provides
a variety of inheritance mechanisms (and allows user-
defined extensions to this set), in these examples we
use inheritance only to specify locally overridable de-
fault values.

Valueclass information is used to deduce type viola-
tions, to determine the semantic classes for values, to
coerce ambiguous notation to the appropriate data type,
and to organize particular interface mechanisms. Cardi-
nality information is similarly used to detect contradic-
tions. The behavior of the system on detecting a value-
class or cardinality violation (coercing the value to
the new class, interrogating the user, or noticing a
contradiction) is controlled by the setting of a global
switch.

Since the task of the dispatcher is to create trips, it
seems useful to reify the concept of a trip. We have a
class of trips, and members of that class that are
partic:ular trips. Conceptually, the dispatcher believes
that a trip has been composed when he or she has told
a particular driver to drive around in a specific truck
doing certain things. We represent these components of
a trip as slots in the trip unit: driver, truck, and
itinerary. We represent an itinerary as a sequence
of actions, where each action is a triple: a city for the
action to take place in, an object for the action (one of
the shipments or nil), and the particular action to be
taken (originating in that city, taking that shipment on
or off the truck, or just visiting the city). This represen-
tation. is strong enough to specify the route of a trip to
the individual highway segment level, but flexible
enough to allow us the more minimal specification of
only the key actions of the trip, permitting the driver to
take the usual (shortest) route between any two cities.
From the specification of a driver, truck, and itinerary
for a trip (and the weather), it is possible to derive other
facts about a trip-for example, how long it takes and
how much it costs. We also store such derived informa-
tion in slots of the trip. Figure 3 shows the information
in trip Example. trip partway through a problem-
solving process.

WORLDS AND TRUTH MAINTENANCE
In general, problem solving is the discovery of some set
of beliefs-be they the values of some variables, a com-
plex data structure, or a collection of formulas in a
theorem prover. In systems that search, different sets of
beliefs are believed at different points in the problem-
solving process. That is, we may start by believing X,
conclude Y, and then switch context to believing Z. On
the other hand, the entire search process proceeds
against a background of a fixed set of facts--a model
of the unchanging underlying world. Thus, if our
task is to generate itineraries through the dies of
Mid. Continent, we have at various points beliefs
about partially assembled itineraries, and the costs and
consequences of these itineraries. On the other hand,
facts such as the connectivity network of cities and
highways, the capacity of trucks, and the 1ic:ense class
of drivers are constant throughout the problem-solving
process. These background facts are true in every con-
text. (Of course, if our problem solving included the
possibility of improving drivers’ licenses or adding
routes to our territory, these would cease to be facts in
the background.) The system represents (mast) such
background facts more economically, without incurring
the space and time costs of truth maintenance.’

The ATMS is primarily concerned with those expres-
sions that have different values in different scontexts-
the fodder of search. The ATMS records the justifica-
tions for beliefs, propagates justifications on the basis of
new derivations, and ensures that exactly the appropri-
ate derived facts are visible at any time. To iaccomplish
this, the ATMS incorporates three basic concepts: facts

(also called propositions or nodes), assumptions, and
jusfificafions.3

Formally, the ATMS manipulates assumptions and
propositions. Each assumption corresponds to a primi-
tive decision or choice. We use assumptions primarily
either to hypothesize the existence of some context or
to believe some particular fact. Each proposition has an
associated datum, its content for the users of the ATMS.
The datum, however, is not itself used by the ATMS
operations. (Thus, each own-slot value and unstruc-
tured fact that has been noticed by the ATMS is the
datum for its own unique proposition. Backg,round facts
economize by going without propositions.) We use the
notation p to represent the proposition associated with
fact P, and the notation p to represent the assumption
of P-the choice of believing p.

Propositions may be justified in terms of assumptions
or other propositions. Justifying proposition ;z by X and

ZBackground facts are not to be confused with defaults-defaults are a mech-
anism for easily expressing a bulk of information and exceptions for that
information. In general. a particular default may or may not be true in the
background.

3There are various ways that information can be stored in the KEE system: as
the values of own and member slots and facets, in the inheritance links
between units, and as unstructured facts (arbitrary data structures). The
ATMS maintains the truth of onlv the values of own slots and unstructured
facts. We have not implemented iruth maintenance on statem’ants such as
(Cannon-ball 1s in class large.trucks) (class membership) and
(The transmission of all trucks is automatic) (member-slot
values). Some of our recent work has produced Opus, a KEE-like system
where all facts are accessible to the ATMS 181.

366 Communications of the ACM April 1988 Volume 31 Number 4

Articles

&!, (X, ‘&/I- 2) is the assertion that, whenever X and Yare
believed, Zis to be believed, too.

Viewing the justification of a proposition by a set of
assumptions and propositions as a single proof step, we
see that the justification structures for a particular
proposition form proof trees for that proposition. An
environment is the set of assumptions obtained by trans-
versing such a justification structure back to a well-
founded set of assumptions. The label of a proposition is
the set of minimal environments that support that prop-
osition. The label can be seen as a summary of the
necessary assumptions required for believing the asso-
ciated datum. The primary operation in the ATMS is
the addition of a justification to a proposition. This
causes the ATMS to update the labels of all affected
propositions. That is, if we discover another set of as-
sumptions that supports the belief in proposition /? we
consider for each proposition directly justified by /3
whether that set of assumptions is part of a new mini-
mal support for it. This process ensures the label of a
proposition always reflects every minimal set of as-
sumptions that imply that proposition.

It is convenient to identify “assuming a datum in a
context” with the proposition structure of that datum
and with the datum itself. Data are distinguished from
propositions because propositions include more infor-
mation-proofs of the datum and summaries of the sup-
porting assumptions of those proofs. Assumptions are
distinguished from propositions because (1) propositions
can acquire other justifications than just the decision to
assume them, and (2) assumptions are used for the sys-
tem’s context mechanism. On the other hand, it is con-

1

The truck.cost of
some.trip is 452

venient in most situations to think of facts as identical
with their propositions (and, occasionally, with the as-
sumption of those facts).

Let us consider an example in greater detail. Suppose
we come to justify the fact

The truck.cost of some.trip is 452 (4

on the basis of the facts

The truck of some.trip is Traveler

and

The itinerary of some.trip is.... K7

This belief might arise, for example, from the applica-
tion of a rule about computing truck costs. In any con-
text where we come to believe &and c’, we also believe
.,u. If our beliefs in 8 and Care based on assumptions kj
and ?, then the structure for the proposition whose
datum is A points to the justification structures &and -
C, and the label, ((& C)j (Figure 4).

We might also come to justify J on the basis of facts
e and

The truck of some.trip is Queen.Bee, (31

.ZJ similarly supported by assumption .!%. The label of A
would then be (J& 21, (I?‘, s}). Our justification struc-
ture grows to that of Figure 5. If we discover a justifica-
tion of JJ’ that traces back to assumptions 8, 2, and ?,
this new justification is not included in the label of A,
as it is subsumed by the environment {E, e).

The ATMS treats the fact false specially. A set of
assumptions is inconsistent (nogood) if we can derive

7 - B
some.trip is

Traveler

0

The itinerary of
some.trip is ._.

0

April 1988 Volume 31 Number 4

FIGURE 4. The Proposition Structure of A

Communications of the ACM 387

Articles

The truck.cost of
some.trip is 452

The truck of
some.trip is

Traveler

The itinerary of
some.trip is . . .

a

The truck of
some.trip is

Queen.Bee

a

FIGURE 5. The Proposition Structure of A with a Second Justification

false from it. Traditionally, inference is the process of
extending a set of beliefs by applying inference proce-
dures to these beliefs. The use of the classical proposi-
tional logic illustrates this point: If I believe (Y and I
believe (Y > /3, then I am entitled to believe p. If that
process produces a contradiction, one of our original
assumptions must itself be wrong. The ATMS relies on
this principle. It marks as inconsistent all sets of as-
sumptions from which contradictions have been de-
rived and removes derivations based on such assump-
tion sets from its working memory. In the KEE system,
contradictions can be created not only by explicitly de-
riving false, but also by conclusion of both LY and

(not CY), and by cardinality and valueclass violations. For
simplicity’s sake, however, in most of our examples we
induce contradictions only by explicitly deriving
false.

Using the ATMS as a foundation, we have built a
context mechanism, much in the spirit of the contexts
of QA4 [Zl] and Conniver [la]. We call each context a
world. Worlds can be created interactively through the
user interface, by the actions of the rule system, or
programmatically. Figure 6 shows the KEEworlds
Browser, a graphical representation of the worlds ex-
tant at any time. The browser shows a single world,
start. When creating a world, the user can specify a

388 Communications of the ACM April 1988 Volume 31 Number 4

Articles

parent world or worlds. The newly created world has,
as a default, all the assumptions (and hence, derived
facts) of its parent worlds.

A world is characterized by a set of assumptions-
both the assumptions of the existence of that world and
its ancestor worlds, and the assumptions of facts explic-
itly asserted and deleted in that world. Testing the con-
text-relative belief in a proposition is straightforward: If
the assumptions of a world are a superset of any of the
environments in the label of the proposition, that prop-
osition is believed in that world. The system treats as
believed in a world not only those assumptions explic-
itly asserted into that world, but also any fact that has a
derivation based on those assumptions. Thus, if in
world \k we believe Band C, we also believe A, because
C has been shown to be a consequence of A and & This

FIGURE 6. KEEworids Browser of Start

COMPUTE.TOTAL.COST
while

(the truck.cost of ?t is ?vc)
(the driver.cost of ?t is ?dc)

believe
(the total.cost of ?t is (+ ?dc ?vc))

COHPUTE.TRUCK.COST
while

(the cost.per.mile of (the truck of ?t)
is ?x)

(the distance of ?t is ?d)
believe .

(the truck.cost of ?t is (* ?x ?d))
COMPUTE.DRIVER.COST

while
(the driver.cost.per.hour of ?t is ?w)
(the duration of ?t is ?d)

believe
(the driver.cost of ?t is (* ?d ?w))

COMPUTE.DRIVER.COST.PER.HOUR
while

(the waqe.rate of (the driver of ?t)
is ?w)

believe
(the driver.cost.per.hour of ?t is ?w)

COHPUTE.DURATION
while

(the itineary of ?t is ?i)
(the truck of ?t is ?v)
(the weather of mid.continent is ?w)

believe
(the duration of ?t is

(compute.duration ?i ?v ?w))

FlGURE7. Cost.Computation.Rules

belief carries over into this world even though the jus-
tification LJ, C k A may have been made when the sys-
tem was “focused” on some other world, perhaps even
before q was created. We do not ha,ve to rederive A,
because the ATMS preserves this derivation.

Rules and Justifications
We have spoken of the system creating justifications. In
most applications, the primary source of justifications is
the instantiation of deduction rules (although one can
also explicitly add justifications). The KEE system has
two kinds of rules: deduction rules and action rules. De-
duction rules express the theories of a particular do-
main representation-truths believed in every world.
Action rules create contexts and change the assump-
tions of particular contexts4

When a deduction rule is instantiated, a justification
is created. The justifications ensure that, whenever
facts matching the premise of the rule are believed, the
system believes the corresponding conclusions. Thus, if
a deduction rule is invoked that concludes X, 74 I- 2, we
do not necessarily know 2 in any specific world. ln-
stead, the ATMS has built a structure, the justification,
that enables the system to recognize that, if we ever
come to believe both X and 74 in a world, we also be-
lieve Zin that world. Figure 7 shows the deduction
rules for computing the cost of trips in our example
domain.

Truth Maintenance across Worlds
The interaction of truth maintenance with worlds may
seem clearer with an example. In this section we show
how facts computed in one world are visible in other
worlds that share the appropriate assumptions. We be-
gin by asserting four facts in world start:

The driver of example.trip is Gray; (4

The truck of example.trip is Piper: (3)

The itinerary
of example.trip is

'((Indianapolis nil origin)
(Seymour computers on)
(Thayer computers off));

(G1

The weather of Mid.Continent is snow. (.A/)

‘The system allows any rule to be used both for reacting to assertions (for-
ward chaining] and for answering queries (backward chaining). Rules in KEE
are written in KEE’s rule language, which itself is based on the extensible
query and assertion language TellAndAske. In cmr examples. the clauses of
rules are either the assertion or deletion of facts, the evaluation in the under-
lying Lisp system of some expression, or the unification of a variable with an
underlying evaluation. Unmarked facts are interpreted as assertions, and un-
unified Lisp expressions as Boolean tests. For the examples used in this arti-
cle, the reader need only understand that a statement of the form (the
location of Cannonball is Thayer)refers to one value of the loca-
tlon slot in unit Cannonball as Thayer. and that a statement of the form
(Cannonball is in class trucks) means that Cannonball is a
member of some class in the transitive closure of the subclass relation on
trucks. TellAndAskm allows embedding of subexpressions (e.g., (the
transmission of (the truck of trip.1) is automatlc))and
unifies variables (“?” symbols).

-
T”TellAndAsk is a trademark of IntelliCorp.

April 1988 Volume 31 Number 4 Communications of the ACM 399

Articles

‘Thus, world start includes, in its characteristic as-
sumption set, assumptions for each of (C)-(_/d). Let us
call these assumptions 2, 3, <, and .&

When we query the system to determine the total
. coet of example _ trip in world start (using the
cost. computation. rules), it runs the rules, de-
ducing the fact

‘rhe total. cost
of example.trip is 308.475. (4

At this point, proposition 4 includes in its label the
environment 12, 3, r$ 3). As these assumptions are a
subset of the characteristic assumptions of world
start, fact 9 is believed in start. Figure 8 shows a
display of the unit example. trip relative to world
start after this query. Since in deriving this value we
derived several other intermediate values (such as the
truck. - and driver. costs), the unit display also
shows these values. Correspondingly, these facts have
justification structures including subsets of (2, 2, <, 2).
(This display is a condensation (eliminating facets) of
the display obtained by selecting Display Unit from
the browser menu. In general, the user interface allows
the user to browse and edit the knowledge base relative
to worlds.)

Because the ATMS creates justification structures for
derived facts, the justifications for beliefs are available
to system and user programs. One such facility is in-

voked by selecting explain from the browser menu.
Figure 9 shows the result of this selection-the explana-
tion graph (proof tree) for the value of the total. cost
of example. trip.

We can now create another world, other _ world,
asserting the same four facts (C)-(X) in it. Thus, the
characteristic assumptions of other. world include
(2, 2, <, Jid]; other. world sees any fact (such as 9)
that is justified by this set. Figure 10 shows the browser
and facts of other _ world. If we remove, say, assump-
tion i; from the characteristic set of other. world, the
belief in the consequences of that deduction in
other. world is withdrawn. In Figure 11 we see the
beliefs of other. world after we have retracted fact &
from other. world. The beliefs dependeni. on the
driver being Gray (such as the driver. cost and
total. cost of example _ trip) are no longer pres-
ent. Beliefs that do not depend on the drive:r, however,
(such as the truck. cost of example. trip) are still
there.

Contradictory Worlds
If the ATMS has been given a derivation for false
that is justified by assumptions believed in (a particular
world, then that world is contradictory and is consid-
ered nogood. Figure 12 shows the browser after we
have asserted a second truck for example. trip in
other. world. Since the maximum cardinality of the

3wn dot: OlSTANCE from EXAMPLE.TRIP
vo,ues: 360

3wn slot: ORWER from EXAMPLE.TRIP
“~1”es: GRAY

3wn slot: ORI”ER.COST from EX*MPLE.TRIP
values: 114.07498

3wn slor: DRI”ER.COST.PER.HO”R From EX*MPLE.TRIP
“alnes: 13.5

Own dot: OURATlON from EX*MPLE.TRIP
“clues: 8.449999

Own slot: ,TlNER*RY from EX*MPLE.TRIP
Ya,ucs: ((INOIANAPOLIS NIL ORlG!N) (SEYMOUR COMPUTERS ON) (THAYER COMPUTERS OFF):

own s1or: M*X.“OL”ME from TRIPS
Values: UNKNOWN

Own sht: ORIGIN frmn EX*MPLE.TRIP
vokles: INoI*N*POLIS

Own slot. SHIPMENTS.H*NOLEO from EX*MPLE.TRIP
vsluer. COMPUTERS

Own dot: TOTALZOST from EX*MPLE.TRIP
values: 308.41498

Own slat: TRUCK from EX*MPLE.TRIP
“clues: PIPER

Own dot: TR”CK:.COST from EX*MPLE.TRIP
Values: 194.4000,

FlGURE8. Example-Trip in Start afterQuery

390 Communications of the ACM April 1988 Volume 31 Number 4

Articles

FlGUREg. ExplanationoftheTotal.Costof Example.Trip

truck slot is 1 and we have asserted two different

f7HE WEATHER OF M,O.CONT,NENT IS SNOW,
iTHE ORlVER OF EXAMPLE.TRIP IS GRAY) ’
(THE TRUCK OF EXAMPLE.TRIP IS PIPER,
~THE ITINERARY OF EXAMPLE.TRIP IS ((#(Unit: INOIANAPOLIS SIGG~ANTI NIL ORIGIN)
(#[Unit: SEYMOUR BIGGIANT] #[Unit: COMPUTERS BIGGIANT] ON) (#[Unit: THAYER
BIGGIANT] #[Unit: COMPUTERS BIGGIANT] OFF)))

(THE DURATION OF EXAMPLE.TRIP IS 8.449999)
(THE ORIVER.COST OF EXAMPLE.TRIP IS 114.07498)
(THE TOTAL.COST OF EXAMPLE.TRIP IS 308.47498)
(IHE DRI”ER.COST.PER.HOU9 OF EXAMPLE.TR,P IS 13.5)
(THE TRUCK.COST OF EXAMPLE.TRIP IS 194.40001)
(THE ORIGIN OF EXAMPLE.TRIP IS INOIANAPGLIS)
(A SHIPMENTS.HANOLEO GF EXAMPLE.TR,P IS COMPUTERS,

II. (THE DISTANCE OF EXAMPLE.TRIP IS 360)

FIGURE 10. The Beliefs of Other. War Id

(THE WEATHER OF MIO.CONTINENT IS SNOW)
(THE TRUCK OF EXAMPLE.TRIP IS PIPER)
(THE ITINERARY OF EXAMPLE.TRIP IS ((#[Unir: INDIANAPOLIS BIGGIANT] NIL ORIGIN)
(#[Unit: SEYMOUR BIGGIANT] #[Unit: COMPUTERS BIGGIANT] ON) (#[Unit: THAYER
BIGGIANT] #[Unit: COMPUTERS BIGGIANT] OFF)))

(THE OURATION OF EXAMPLE.TRIP IS 8.449999)
(THE TRUCK.COST OF EXAMPLE.TRIP IS 194.40001)
(T”E ORIGIN OF EXAMPLE.TRIP IS INDIANAPOLIS)
(A SHIPMENTS.HANOLEO OF EXAMPLE.TRIP IS COMPUTERS)
(T”E DISTANCE OF EXAMPLE.TRIP IS 360)

FIGURE 11. The Beliefs of Other. war Id after Retracting the
Driver

trucks for example. trip, we have a contradiction,
and other. world is nogood. Nogood worlds appear in
the browser with solid boxes in their centers.

When the ATMS detects a particular set of assump-
tions is mutually inconsistent, it propagates that infor-
mation throughout the justification structure. This can
result in some worlds becoming nogood. The rule sys-
tem ignores nogood worlds in choosing rules to apply.
We can exploit this behavior with rules that produce
contradictions (e.g., by deducing f a 1 se) in the worlds
that violate domain constraints-that are logically in-
consistent, undesirable, or just plain unlikely to occur
in the modeled domain. Thus, deductions of contradic-
tions can be used as a tool for controlling the reasoning
process.

Constraints
We express the domain-specific constraints as deduc-
tion rules whose conclusion is false. For example, the
dispatcher errs in assigning driver d to truck v, when d
and v are in different cities. We express this constraint
with the following rule:

DRIVER.AND.TRUCK.
MUST.BE.IN.SAME.CITY

while
(the location

of (the driver of ?t) is ?dl)
(the location

of (the truck of ?t) is ?vl)
(not (equal ?dl ?vl))

believe
false.

April 1988 Volume 31 Number 4 Communications of the ACM 391

Articles

FIGURE 12. Browser with Other. war Id Nogood

If we run this rule in a world where Gray (located in
Gary) and Queen. Bee (located in Indianapolis)
are the driver and truck, respectively, of exam-
pie. trip, we deduce false, making the world
nogood. The examples in this article were run with
abou.t a dozen constraint rules.5

WORLD STRUCTURES
The dispatcher is faced with a difficult problem: satisfy-
ing an irregular set of constraints while working in a
large combinatorial space. This problem has aspects of
“interpretation construction” (i.e., the assignment of
values to a few variables) in the selection of drivers,
trucks, and itineraries for trips. Itineraries are them-
selves complex objects, however, not amenable to
simple optimization. In the next three sections, we de-
scribe a series of tools for the dispatcher: first, the dis-
patcher’s advice taker, a manual approach that illustrates
the u.se of the system to record the dispatcher’s deci-
sions and check them for constraint violations; second,
a dispufcher’s apprentice that, using the rule system,
demonstrates a division of work-giving the dispatcher
the hard problem of determining itineraries, and allow-
ing the system to complete the more mechanical details
of truck and driver assignments; and, third, a disputch-
er’s replucement that programmatically solves the entire
problem. Our intent is to illustrate the interaction be-
tween problem solving, the ATM& and the worlds sys-
tem. Clearly, we are not presenting an interface for a
dispatcher so much as the tools a system builder could
use in constructing a problem solver for the dispatcher.

Problem solving is typically an exploratory, incre-
mental process. That is, one starts with a set of beliefs
about. the world and recursively considers alternative
choices that modify those beliefs. Usually, the modifi-
cations to a set of beliefs are incremental: By and large,
we retain most of the original assumptions of the initial
state, adding or deleting only a few at each step. Thus,
the dispatcher who starts with the problem of complet-
ing an empty trip may choose among trucks, drivers,
and iiineraries to get to the next problem state; once in
that state, the dispatcher may modify the itinerary or
focus on an earlier point in the problem-solving proc-
ess. KEEworlds allows us to reflect the structure of the
search space in the structure of a worlds graph. That is,
one can model alternatives or changes to a particular
world by creating child worlds. By default, these worlds

‘For the rules. the data, and a formal statement of the problem, write to the
author.

inherit the assumptions (and, therefore, the derived
facts) of their parents. The user, however, is also al-
lowed to change (add and delete) assumptions in the
children (often in the creation process). Thus, we might
model the action in world 9, of sending Queen. Bee
from Indianapolis to New. Harmony by creating
\k,, a child world of \k,; and, in \k,, changing
Queen. Bee’s location to New. Harmony. lf (as an as-
sumption) the driver of Queen. Bee in \k, is Green,
Queen. Bee’s driver will still be Green in $J,.

Similarly, a common problem-solving tac:tic is to
break a problem into subproblems, solve the subprob-
lems independently, and finally merge the subproblem
solutions (if compatible) into a global solution. We
model this structure by placing the original problem in
a world, q’, and then creating children worlds, \k,,, . . . ,
9,“, each of which encodes one of the subproblems.
When we have a set of descendant worlds, \kd,, . . . ,
qd,,,, that solve the subproblems, we try to merge them
into a solution world. In the dispatcher’s advice taker,
we model the solution of the entire problem of sched-
ule creation by breaking the problem into the tasks of
defining a trip for each itinerary in its own separate
world, and then merging these worlds (building a child
world with these worlds as parents) when all tasks
have been solved. This merge can fail even though
each subproblem solution is itself consistent. For exam-
ple, two itineraries can in themselves be consistent, but
together be inconsistent because they use the same
driver. We model dead ends and failures as nogood
worlds.

Formally, the worlds exist in a directed, acyclic
graph over the “parent-child” relation. Loosely, the as-
sumptions true in a particular world, 9, are those that
have been explicitly added at 3, and those assumptions
in the parents of Q that have not been explicitly de-
leted in q.6

THE DISPATCHER’S ADVICE TAKER
The dispatcher’s advice taker leaves the decisions
about trip composition to the dispatcher, but checks
those decisions for consistency with the constraints of
the problem space. That is, the dispatcher decides who
to assign to what, and the advice taker checks to see if
that assignment breaks any of the dispatching rules.
(Thus, the advice taker acts in the spirit of McCarthy’s
Advice Taker [IS]-able to converse about the domain
and verify assertions, but not able to make decisions.)
As described above, we express constraints as deduc-
tion rules whose conclusion is false.

A typical interaction with the dispatcher’s advice
taker might go as follows: We have three itineraries,
iterl, iter,, and iteq, for which we seek to make simul-
taneous truck and driver assignments:

‘This descriotion is a simolification of the true situation. where a more
elaborate conflict-resolution strategy is used when a particular assumption
has been both added and deleted in different ancestors. For the details of the
conflict-resolution strategy, the reader is referred to Morris and Nado’s article

1191.

392 Communications of the ACM April 1988 Volume 31 Number 4

Articles

iter,= ((Indianapolis nil origin)
(Seymour computers on)
(Thayer computers off));

iterz = ((Garynilorigin)
(La.Harpe toys on)
(Viola carpet on)
(Oregon toys off)
(Cook carpet off));

iter, = ((Indianapolis nil origin)
(Kokomo refrigerators on)
(Warsaw refrigerators off)
(Roselawn bicycles on)
(Gary typewriters on)
(Attica typewriters off)
(Bloomington bicycles off)).

We create a world, origin, and describe the
weather of Mid.Continentas fair inthatworld.
We then create three child worlds of origin-worlds
one, two, and three-making trips trip. 1, trip. 2,
and trip . 3 have itineraries of iter, , iterz, and iter3,
respectively in those worlds (Figure 13). Effectively, we
have broken the problem of finding compatible drivers
and trucks for these trips into the subproblems of find-

ing a driver and truck for each trip. We represent par-
tially completed solutions to these problems in worlds.
When each subproblem is completely solved, we merge
the solutions to see if they are mutually consistent.

We try assigning Gray to trip. 1 by creating
Gray/one, a child world of one, asserting “the
driver of trip.1 is Gray" inthatworld and
running the constraint rules in the new world. These
rules render that world nogood. Examination of the ex-
planation reveals that Gray, based in Gary, is unsuita-
ble as a driver for a trip that starts in Indianapolis
(Figure 14). Abandoning that world, we build
Green/one and Queen. Bee/Green/one, where
Greendrives Queen.Beeontrip.l.Running the
constraint rules in these worlds shows them free of
contradictions (Figure 15). We continue in a similar
fashion, finding a place for Gray driving Piper on
trip. 2, and for White driving Queen. Bee on
trip. 3. In Figure 16 we see that an attempt to merge
the three leaf worlds has failed because we have
assigned the same truck (Queen. Bee) to two different
trips. We correct this with a new truck for trip. 1,
leading to a successful merge (Figure 17). This world
cumulates the facts of its parents to form a solution.

FIGURE 13. Worlds One, Two, and Three

FIGURE 14. Gray Should Not Drive Trip . 1

April 1988 Volume 31 Number 4 Communications of the ACM 393

Articles

FIGURE 15. After Assignment to or ip . 1

FIGURE 16. Failure of Merge. a

Modifying the Knowledge Base
Because we are in a dynamic, symbolic, and interactive
environment, it is straightforward to modify the repre-
sentation structures to reflect new concepts and con-
straints. If, for example, we wish to introduce the idea
that (1) trucks have transmissions that are typically
manual, (2) Piper has an automatic transmission, and
(3) Driver Gray refuses to drive any truck with an auto-
matic transmission, we could

(1) create member slot transmission in class unit
trucks, giving it value manual:

(2) assert (the transmission of Piper is
automatic); and

(3) create another member of the class of constraint
rules whose external form is as follows:

while
(the driver of ?t is Gray)
(the transmission of

(the truck of ?t) is automatic)
believe

false.

Running the constraint rules now makes world
merge. b nogood.

This description of the dispatcher’s advice taker is
interesting not as an interface one would actually want
to provide to a working dispatcher, but because it illus-
trates parent and child relationships between worlds,
and shows the use of the world system to reflect prob-
lem partitioning and recombination. Worlds express
problem-solving state; that state can be used for things
such as segmenting knowledge, checkpointing changes,
and preserving search state at the discretion of the
system developer.

THE DISPATCHER’S ASSISTANT
AND THE RULE SYSTEM
Most problems require more action on the part of the
system than simple state preservation and (constraint
checking. That is, we usually want the computer to
actually solve something, not merely represent it. KEE
provides several different mechanisms for problem
solving, such as active values (daemons), methods
(object-oriented programming), and conven.tional pro-
gramming. One such mechanism is the rule system. We

394 Communications of the ACM April 1988 Volume 31 Number 4

Articles

FIGURE 17. Successful Merge

have already seen examples of deduction rules-decla-
rative expressions of universal truths. Deduction rules
create justifications for facts; the ATMS ensures that
worlds find those facts that are true in them. Action
rules cause the system to change its view of the state of
some world. That is, like the programmatic assignment
of a value to a variable, action rules change the state of
the system.7

The two kinds of action rules are same-world action
rules and new-world action rules. As the name suggests,
same-world rules run in a particular world; they make
changes to (additions to and deletions from) the beliefs
(characteristic assumptions) of that world. For a same-
world rule to run in a world, all the premises of the
rule must be true in that world. New-world rules create
a new world. This world can have multiple parents.
That is, the rule system searches for a set of compatible
parent worlds where the facts have been added that
satisfy the premises of the rule. For each such set, it
builds a world that has that set as its parents. That new
world inherits all the assumptions (and therefore de-
ductions) of its parents. The changes implied by the
action part of the rule then take place in the new
world. Syntactically, new-world rules include the key-
wordin.new.world(orin.new.and.world)toin-
dicate new-world creation. We distinguish action rules
by the use of the keywords if and then, in place of
the deduction rule’s while and believe.

We trust the conclusions of the ATMS because the
ATMS implements a simple monotonic propositional
logic, and theorems about that logic assure us that sub-
sumption and elimination of contradictory derivations

‘The deduction/action rule division roughly corresponds to the traditional
dichotomy in AI between declarative and procedural knowledge [28]. Often in
AI the use of rules as facts is jumbled with their procedural interpretation.
Deduction rules express universal truths and can be understood indepen-
dently of their context. Action rules are, in many ways, like the procedures of
a program. Independently understanding their behavior can be as difficult as
understanding the import of an isolated program statement, separated from its
programming context. Recognizing this difference between these two varieties
of rules clarifies the issue of why rule-based systems can seem both straight-
forward to understand and more complicated than ordinary programming
languages.

are valid operations. To preserve this clean semantics,
the premises of deduction rules must be either facts
known to the ATMS or state-independent Lisp compu-
tations. Action rules express programmatic change, and
we make no pretense of expressing a declarative se-
mantics of programs. We can therefore be more liberal
about premises for action rules, allowing operators such
as THNOT, quantified subexpressions, mixed forward
and backward chaining, and reference to non-ATMS-
facts (such as class membership and member slots).

The ability of a new-world action rule to gather
clauses from different worlds in creating a new child
world can make it difficult to develop particular world
topologies. It is often the case that the children of a
world are meant as mutually exclusive alternatives.
Such worlds (and their descendants) should never
merge. To simplify expressing this idea, the system pro-
vides exclusion sets: sets of incompatible child worlds.
Each world can have one or more exclusion sets. Two
worlds in an exclusion set are treated as mutually con-
tradictory and cannot share descendants. Exclusion sets
can be created through the user interface, programmat-
ically, or by the rule system. As a default, if world \E,, a
child of world \k,, was created by the rule system, then
\k, is in \k,‘s default exclusion set. It will be excluded
from the other worlds created by running rules on \k,.
Rules specified with the keyword in. new. and. world
create worlds that are not in any exclusion set. Exclu-
sion sets are displayed on the browser with the sym-
bol q .

The Dispatcher’s Assistant
In this section we illustrate the dispatcher’s assistant, a
five-action-rule system that, given a set of itineraries,
determines a compatible and legal set of driver and
truck assignments for those itineraries. To run the
assistant, we start by creating a world, begin, and,
for each itinerary, making it the itinerary of a trip in
begin. We make a list of these trips, the trip. list
of assistant, in begin. That is, in the world
begin, we assert the following facts:

April 1988 Volume 31 Number 4 Communications of the ACM 395

Articles

The weather of Mid.Continent is fair
The itinerary of trip.1 is

((Indianapolis nil origin)
(Seymour computers on)
(Thayer computers off))

The itinerary of trip.2 is
((Gary nil origin)

(La.Harpe toys on)
(Viola carpet on)

The
(

Oregon toys off)
Cook carpet off))
itinerary of trip.3 is
Indianapolis nil origin)
Kokomo refrigerators on)
Warsaw refrigerators off)
Roselawn bicycles on)

(Gary typewriters on)
(Attica typewriters off)
(Bloomington bicycles off))

The itinerary of trip.4 is
((Gary nil origin)

(Oregon books on)
(Cook newsprint on)
(Indianapolis newsprint off)
(Mitchell books off))

The trip.list of assistant is
(trip.1 trip.2 trip.3 trip.4).

Understanding the behavior of the assistant requires
understanding the scheduling algorithm of the rule sys-
tem. A rule system cycles through a three-step process
of (1) determining which instantiations of rules are eli-
gible to fire, (2) selecting a particular instantiated rule
to fire, and (3) taking the actions required by that firing
Collectively, the set of instantiated rules that are eligi-
ble to fire at any cycle is that cycle’s conflict set. A rule
system’s conflict-resolution algorithm decides which ele-
ment. of the conflict set fires. The conflict-resolution
algorithm of the rule system is based on an agenda.
When an element of the conflict set is discovered, it
is added to the agenda; at each step, one of the rule
instantiations on the agenda is selected for firing. The
rule isystem’s default agenda mechanism divides en-
abled rule instantiations into three classes: deduction
rules, same-world action rules, and new-world action
rules. It fires all the rules in the earlier classes before
any in the later; rule instantiations in each class are
kept on a stack. Thus, the default rule system behavior
implements depth-first search: It tries to expand the
consequences of the latest discovery first; if that fails,
the system focuses on earlier situations and tries their
alternatives. The rule system provides agenda functions
for backward chaining using breadth-first and best-first
searches, and forward chaining using combinations of
rule priorities and premise complexity. Users can write
their own agenda mechanisms to implement strategies
such as blackboards [ZO].

(1) None of the constraint rules matches the data,
but the first two same-world action rules (make. candi
date. trucks and make. candidate. arrivers)
fire repeatedly, accumulating all trucks and drivers
as values of the candidate. trucks and candi
date.drivers slotsof assistant inworldbegin.
Because all same-world rules are run before any new-
world rules, all the trucks and drivers are noticed be-
fore any assignment of a truck or driver to a trip.

(2) The new-world action rules then come into
effect. Assign. truck selects the first trip in the
trip . 1 is t of the current world, finds a candidate
truck, and, in a new world, (1) makes that truck the
truck of the trip, (2) marks that trip as the trip that is
“pending” a driver, and (3) removes that truck from the
set of candidate trucks. (Thus, this algorithm implicitly
enforces the constraint that a truck cannot be used in
more than one trip.)

(3) The constraint rules then get their turn. If they
fail to make this world nogood (fail to find a. contradic-
tion), assign. driver continues by findin.g the
unique pending trip, the trip. list, and a candidate
driver, and, once again in a new world, by (1) making
that driver be the driver of the trip, (2) removing that
driver from the candidate drivers, (3) resetting the
pending trip, and (4) setting the trip . Ii s I: to the rest
of the previous trip .I is t. Once again the constraint
rules run.

In cases (2) and (3), we have selected one of several
possible candidate trucks or drivers. In fact, the rule
system would be perfectly happy to match these rules
against every candidate truck and driver. Since the
agenda is a stack, however, these other elements of the
conflict set are postponed until after the con.sequences
of the first assignment have been pursued. The system
stops producing children on a particular branch when
either (I) the constraints mark a world nogood, keeping
the action rules from pursuing its consequences;
or (2) all the possible choices at that world have been
exhausted.

Figure 18 shows the additional rules for the dispatch- (4) The system, as described thus far, eventually
er’s assistant. The system consists of five action rules in finds all legal truck and driver assignments. The fifth
addition to the constraint rules discussed earlier. The rule stops the system after the first solution (literally by

396 Communications of the ACM

assistant keeps its local search state on the canoi -
date. trucks, candidate. drivers, t:rip. list,
pending. trip, and problem slots of the assist -
ant unit. At any point in the search, the candi -
date. trucks and candidate .drivere slots con-
tain the available but not-yet-assigned trucks and driv-
ers, and the trip. list slot contains a list of the trips
that have not yet been filled. We denote a trip that has
had a truck assigned but does not yet have a driver
as a pending. trip. We mark the problem of the
assistant as solved when all trips have trucks and
drivers in a consistent world.

We invoke the rule system on these rules (and, of
course, the constraint rules), focusing its attention on
the world begin. This causes the following behavior:

April 1988 Volume .31 Number 4

Articles

clearing the agenda). After execution the browser
shows a tree of worlds with root begin, each world
corresponding to a decision point in the search. Fig-
ure 19 shows the browser after a run of the assistant.

PROGRAMMATIC SOLUTION:
THE DISPATCHER’S REPLACEMENT
Solving the entire dispatching problem (creating itiner-
aries, and assigning compatible trucks and drivers to
them) is considerably more difficult than the previous
task. For this task we turn to a programmatic solution:
a Lisp program, running in the KEE system environ-
ment, that uses KEE’s representation structures and in-
vokes KEE system functionality as needed. We want a
program that finds a feasible solution-one that satis-
fies the constraints. Since this is designed as a demon-
stration system, we also want a program that does this
quickly.

Our strategy is to create a set of trips with compatible
drivers and trucks, and empty itineraries (or, more pre-
cisely, itineraries whose sole element is that they origi-
nate in the location of their trip’s driver and truck).

Thus, if we have four drivers and four trucks, our set
might include four trips, but incompatibilities between
the available drivers and trucks might limit us to a
smaller set. (E.g., if all the trucks are in one city and all
the drivers in another, our maximal compatible set is
empty.) We then consider each shipment in turn, look-
ing for the best way to extend the itinerary of some trip
to include it. If we are unable to find a way of extend-
ing some itinerary within the problem constraints, we
start the itinerary extension process over with a (ran-
domly) different ordering of shipments. (If several such
tries all fail, we look for a different set of compatible
trucks and drivers, and repeat the entire process.)’ Our
algorithm is extremely heuristic-we have sacrificed

“Our algorithm thus combines elements of generate-and-test and depth-first
search. This is in contrast to a pure depth-first search, where the failure to
place a shipment suggests trying a different alternative for the previous ship-
ment. In our algorithm a successful placement of a shipment is not revoked
unless we are trying an entirely different solution to the problem. We chose
this combination in the belief that there are likely to be many solutions in the
search space, but that many parts of the space lack any solutions. Hence, we
want a search strategy that repeatedly samples a narmw radius over a wide
area, rather than one that does a concentrated search in one place. That is. if
a descent from a particular spot does not work out, it is better to try some-
thing completely different than to look too long in the same neighborhood.

HAKE.CANDIDATE.TRIJCKS Collect possibletrucksas candidate .trucksofassistant.
if

(?v is in class trucks)
then

(a candidate.truck of assistant is ?v)
NAKE.CANDIDATE.DRIVERS Collect possibledrivers as candidate.drivers.

if
(?d is in class drivers)

then
(a candidate.driver of assistant is ?d)

ASSIGN. TRUCK Assign a truck to this trip.
if

(the trip.list of assistant is ?l)
(equal ?first (car ?l))
(a candidate.truck of assistant is ?v)

then in.new.worlU
(delete (a candidate.truck of assistant is ?v))
(the truck of ?first is ?v)
(a pending.trip of assistant is ?first)

ASSIGN. DRIVER Assign a driver to this trip.
if

(the trip.list of assistant is (list.of (?first
(a pending.trip of assistant is ?first)
(a candidate.driver of assistant is ?d)

then in.new.world
(delete (the trip.list of assistant is (list.of
(the trip.list of assistant is ?rest)
(delete (a candidate.driver of assistant is ?d)
(the driver of ?first is ?d)
(delete (a pending.trip of assistant is ?first)

STOP -ASSISTANT Stop when you’ve got a solution.
if

(the trip.list of assistant is NIL)

then
(the problem of assistant is solved)
(lisp (stop.forward.chaining))

. ?rest)))

(?first . ?rest))))

FIGURE 18. The Dispatcher’s Assistant Rules

April 1988 Volume 31 Number 4 Communications of the ACM 397

Articles

A
lRUCklRIP.l-CPWNONBPLL-8231

DRMR-lRIP.l-GREEN-8232

TRUCK-TRIP 2-PIPER-8233

2

DRIKR-lRIP.2-GRA'f-8241 DRIKR-lRIP.2~EROW-0234

GRAY-8237

JCK-7RIP.hTRAWLER-8246 TRUCK-TRIP.+TRMLER-8239

A
WXR-lRI~BROW.47

-

FIGURE 19. Worlds after the Dispatcher’s Assistant

optirnality and completeness for simplicity and speed.
We use worlds to preserve the state of our search.

That is, each time the search process makes a choice,
it creates a world embodying the effect of that choice.
(If a ,world with the same information already exists,

we reuse it.) Since many choices violate the constraint
rules, we run the constraint rules immediately after
world creation. If they deduce that the just-created
world is nogood, we consider other alternatives. We
consider which rule produced this nogood in deciding

398 Comnnmicntions of the ACM April 1988 Volume 31 Number 4

Articles

which other alternatives to consider. Worlds are data
structures for the program: the program explicitly calls
the system functions that create worlds, create exclu-
sion sets, run the rule system, and examine the justifi-
cations of facts. Figure 20 shows the browser after run-
ning the dispatcher’s replacement.

We wrote a program that searches for a feasible solu-
tion. It is natural to ask why we did not produce a more
optimal algorithm, and why we have not employed the
algorithmic methods of operations research, such as
linear and dynamic programming, to reach this goal.
Optimizing algorithms are usually considerably more
computationally expensive than simply finding feasible
solutions, especially in irregular domains. Our goal was
not to explore the space of numerical optimization. Of
course, if a close-to-optimal schedule were necessary,
one could apply optimization methods, such as ex-
changing components of solutions and hill-climbing
itinerary variations, to the results of one or several runs
of the main program. Operations-research methods re-
quire restating the problem in formal, mathematical
terms; make assumptions about the nature of the un-
derlying space, for example, linearity and convexity;

and are most suited to modifying an existing solution,
rather than creating one from scratch. We allow any
arbitrary constraints on valid solutions (e.g., “you can’t
ship goats and cabbage at the same time, unless you’re
also shipping farmers”). Our symbolic approach leaves
both the problem and its solution in a form that is
comprehensible to the nonexpert. It is a trivial matter,
for example, for the user to define a new concept and
integrate constraints that use that concept (as we
showed with the transmission example). The symbolic,
model-based approach makes the computational trans-
formations of the system accessible to nonwizards. A
fertile topic for research is the integration of mathemat-
ical optimization algorithms with symbolic problem
expressions.

DISCUSSION
In this small example, we have been able to illustrate
only a few of the potential uses of truth maintenance
and the worlds system. The ATMS is a tool for search.
Its primary attributes are that it preserves deductions
across environments and that it retains the justifica-
tions for deductions. The first of these enables reducing

FIGURE 20. Browser after Running the Dispatcher’s Replacement

April 1988 Volume 31 Number 4 Communicntions of the ACM 399

Articles

search-facts do not need to be rederived, even if the
system is pursuing several different alternatives simul-
taneously; constraints are easily expressed and auto-
matically propagated throughout the knowledge base.
The ATMS particularly lends itself to situations where
the same conclusion or search state would be otherwise
repeatedly rediscovered. The second allows the use of
the justifications for processes such as user explanation
(as in Figure 9), guiding search (as used by the dispatch-
er’s replacement), and (though not illustrated) probabi-
listic and evidential reasoning. Thus, because the justi-
fication structures exist, it is straightforward to do
searc:h strategies such as dependency-directed back-
track.ing. On the other hand, the ATMS is less appropri-
ate for situations where nonredundant information is
never derived and old contexts are rarely continued-
using the ATMS requires storing information that is
never retrieved.

The worlds system provides both a conceptual con-
texting mechanism and a systematic access to the
ATMS. By reifying a group of related facts into a world,
the user acquires direct access to the consequences of
those facts. As we have seen, worlds can be used for
state preservation and checkpointing, incremental solu-
tion construction, hypothetical reasoning, and reason-
ing with incomplete information. A more exhaustive
list would include items such as reasoning about time
and events, and representing belief structures. Because
the A.TMS supports the world system, derivations in
one context automatically propagate to all other appro-
priate contexts. The ATMS also allows the worlds sys-
tem a straightforward implementation of the notion of
merging contexts.

We hope that the concentration of this article on
examples of reasoning about scheduling under con-
straints has not obscured our broader point-that
choosing appropriate representations and tools vastly
expands the set of things a computer system can con-
veniently process. By using an integrated, symbolic un-
derlying representation, we can easily model a complex
domain; by employing the integrated computational
tools of our system, we can easily reason about differ-
ent aspects of that domain. We started with the domain
of “helping the dispatcher of a trucking company.” We
have shown one (of the many) way of representing the
data and knowledge of that domain symbolically. Be-
cause the system is symbolic, we have been spared
most of the intellectual burden of coding and trans-
lating between mental concepts and machine-
understandable form. Because the system provides an
appropriate set of representation primitives-objects,
rules, daemons, messages, truth maintenance, and
worlds-it was straightforward to represent the rela-
tionships in the trucking world and reason about them.
Because the representation is semantically clear, we
can take the same model and use it in different ways,
such as a state preserver, problem solver, user-interface
basis, and simulation system. We have performed
model-based reasoning.

Acknowledgments. I would like to thank William
Faught, Richard Fikes, Peter Friedland, Paul Morris,
Robert Nado, Anne Paulson, Marilyn Stelzner, and Eric
Weiner for their insightful comments on drafts of this
article. The KEEworlds/ATMS system was designed
and implemented by IntelliCorp’s research department:
Richard Fikes, Robert Filman, Phillip McBride, Paul
Morris, Robert Nado, Anne Paulson, Richard Treitel,
and Martin Yonke.

REFERENCES
1.

2.

3.

4.

5.

6.

7.

6.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Brachman, R.J., and Schmolze. J.G. An overview of the KL-ONE
knowledge representation system. Cognitive Sci. 9, z [Apr. 1985).
171-216.
Brownston. L., Farrell, R., Kant, E.. and Martin. N. Programming
Expert Systems in OPS5. Addison-Wesley, Reading, Mass., 1985.
de Kleer. J. An assumption-based truth maintenance system. Artif
Intel/. 28. 2 (Jan. 1986), 127-162.
de Kleer, J.. Doyle, J., Steele, G.L., and Sussman, G.J. Explicit con-
trol of reasoning. In Artificial Intelligence: An MIT Perspective. P.H.
Winston and R.H. Brown, Eds. MIT Press, Cambridge, Mass., 1979,
pp. 93-116.
Doyle, J. A truth maintenance system. Artif. Intell. 12, 3 (1979),
231-272.
Fikes, R., and Kehler. T. The role of frame-based representation in
reasoning. Commun. ACM 28, 9 (Sept. 1985), 904-920.
Fikes, R., and Nilsson, N.J. STRIPS: A new approach to the applica-
tion of theorem proving to problem solving. Artif. Int~lI. 2, 3-4
(1971). 189-208.
Fikes, R.. Nado, R.. Filman, R., McBride, P.. Morris, F’.. Paulson, A.,
Treitel, R., and Yonke, M. OPUS: A New Generation k:nowledge Engi-
neering Environment. Phase 1 Final Report. IntelliCorp, Mountain
View, Calif., 1987.
Goldberg, A., and Robson, Il. SMALLTALK-80: The Laquage and Its
Implementation. Addison-Wesley, Reading, Mass., 1983.
Hayes-Roth, F., and London, P. Software speeds expert systems. Sysr.
Softw. 71 (Aug. 1985). 71-75.
Hewitt, C. Description and theoretical analysis (using schemata) of
PLANNER: A language for proving theorems and manipulating
models in a robot. Doct. dissertation. Mathematics Dept., MIT. Cam-
bridge. Mass., 1971.
London, P. Dependency networks as representation for modelling in
general problem solvers. Tech. Rep. 698, Dept. of Computer Science,
Univ. of Maryland. College Park. 1978.
Martins, J.P., and Shapiro, SC. Reasoning in multiple belief spaces.
In Proceedings of the 8th International Ioint Conference on Artificial
Infelligence (Karlsruhe, W. Germany. Aug.). International Joint Con-
ference on Artificial Intelligence, 1983, pp. 370-372.
McAllester, D. Reasoning utility package user’s manual. AIM 667,
Artificial Intelligence Laboratory, MIT, Cambridge, Mass., 1982.
McCarthy, J. Programs with common sense. In Semantic Information
Processing. M. Minsky, Ed. MIT Press, Cambridge, Mass.. 1968,
pp. 403-418.
McCarthy, J.. and Hayes, P. Some philosophical problems from
the standpoint of artificial intelligence. In Machine Inlelligence 4,
B. Meltzer and D. Michie, Eds. Edinburgh University Press, Edin-
burgh, U.K., 1969. pp. 463-502.
McDermott, D. Contexts and data dependencies: A synthesis. IEEE
Trans. Pattern Anal. Mach. Intell. 5, 3 (May 1983). 237-246.
McDermott, D.V., and Sussman. G.J. The Conniver rr%rence man-
ual. Memo 259, AI Laboratory, MIT, Cambridge, Mass., revised July
1973.
Morris. P.H., and Nado, R.A. Representing actions with an assump-
tion-based truth maintenance system. In Proceedings cf fhe 5th Na-
tional Conference on Artificial Intelligence [Philadelphia, Pa., Aug.].
American Association for Artificial Intelligence, 1986. pp. 13-17.
Nii, P. The blackboard model of problem solving. AI Adag. 7. 2 (Sum-
mer 1986). 38-53.
Rulifson, J.F.. Derksen, J.A., and Waldinger, R.J. QA4: A procedural
calculus for intuitive reasoning. Tech. Note 73, Artificial Intelli-
gence Center, Stanford Research Institute. Menlo Park. Calif.. Nov.
1972.
Stallman, R.M., and Sussman, C.J. Forward reasoning and depen-
dency-directed backtracking in a system for computer-aided circuit
analysis. Artif. Intell. 9. 2 (Oct. 1977), 135-196.

400 Communications of the ACM April 1988 Volume 31 Number 4

Articles

23. St&k, M. An examination of a frame-structured representation sys-
tem. In Proceedings of the 6th International Joint Conference on Artifi-
cial Intelligence (Tokyo, Japan). International Joint Conference on
Artificial Intelligence, 1979. pp. 845-852.

24. Stefik, M., Bobrow, D.G., Mittal, S.. and Conway, L. Knowledge pro-
gramming in Loops: Report on an experimental course. AI Mug. 4,3
(Fall 1963). pp. 3-13.

25. Symbolics Corp. User’s Guide to Symbolics Computers, Volume 4. Sym-
bolics Corp., Cambridge, Mass., 1985, pp. 111-146.

26. van Melle, W., Scott, A.C., Bennett, J.S., and Peairs, M.A. The
EMYCIN Manual. Tech. Rep. HPP-81-16. Heuristic Programming
Project, Stanford Univ., Stanford, Calif., 1981.

27. Williams, C. ART the Advanced Resoning Tool-Conceptual Overview.
Inference Corp.. Los Angeles, Calif.. 1984.

26. Winograd, T. Frame representations and the declarative/procedural
controversy. In Representation and Understanding, D.G. Bobrow and
A. Collins, Eds. Academic Press, New York, 1975, pp. 185-210.

CR Categories and Subject Descriptors: D.2.6 [Software Engineering]:
Programming Environments; D.3.2 [Programming Languages]: Language
Classifications-very high-level languages; 12.1 [Artificial Intelligence]:
Applications and Expert Systems: 12.3 [Artificial Intelligence]: Deduc-
tion and Theorem Proving-nonmonotonic reasoning and belief revision;

1.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods--frames and scripts; representation languages; 1.2.5 [Artifi-
cial Intelligence]: Programming Languages and Software-expert system
tools and techniques; 1.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods and Search

General Terms: Design, Languages
Additional Key Words and Phrases: Assumption-based truth main-

tenance system (ATMS), KEE, KEEworlds, knowledge-based systems,
object-based representations

Author’s Present Address: Robert E. Filman, IntelliCorp, 1975 El Camino
Real West, Mountain View, CA 94040.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

II COMPUTING TRENDS IN THE 1990’S Conference Highlights:

1989 ACM Computer Science l Quality Program Focused on Emerging
Conference@ Computing Trends Ill

l Exhibitor Presentations
l CSC Employment Register
l National Scholastic Programming

Contest
l History of Computing Presentations/

Exhibits
l Theme Day Tutorials
l National Computer Science Departmeni

Chair’s Program

February 21-23,1989
Commonwealth Convention Center

Louisville, Kentucky

acme

Attendance Information
ACM CSC’89
11 West 42nd Street
New York, NY 10036
(212) 8697440
Meetings@ACMVM.Bitnet

Exhibits Information
Barbara Corbell
Robert T. Kenworthy Inc.
866 United Nations Plaza
New York, NY 10017
(212) 752-0911

I’ ‘!I

April 1988 Volume 31 Number 4 Communications of the ACM 401

